New lights about Neanderthal extinction

Jean-Luc Voisin Introduction

Département de Préhistoire, Muséum National d'Histoire Naturelle, USM 103, I.P.H., 1 rue René Panhard 75013 Paris

anderthals are certainly the best known fossil hominid group. At the same time many aspects of their history are still misunderstood and especially their extinction and taxonomic relations with modern humans. There are two schools on this topic: (1) Neanderthals and modern humans were two distinct species or (2) they were considered as one single species, with or without two subspecies. Hypotheses about neanderthal extinction depend mostly on their taxonomic statut. If those two human populations belong to the same species, the extinction of the neanderthal morphology would be the result of neanderthal absorbtion by modern human. On the contrary, if they belong to two distinct species, the extinction of neanderthal morphology would be the result of a competition with modern human without interbreeding

We will see above that Neanderthal extinction could be due to the speciation by distance which allows to use arguments from both schools

I.) A West to East morphological cline

201 188 201	West Europe	Near East	Modern human	Authors
Mastoid process	Sharp pointed	Sharp pointed morphology is not present on all fossils	Never sharp pointed	Vandermeersch, 1981; Trinkaus, 1988
Frontal width	Average = 107.4 mm Min = 106 mm Max = 109 mm	Average = 112.5 mm Min = 110 mm Max = 115 mm	Average = 109 mm Min = 98 mm Max = 113 mm	Vandermeersch, 1981, 1989b
Occipital region	Less rounded with a pronounced torus (i.e., less modern)	More rounded with a torus less pronounced or absent (i.e., more modern)	Rounded without any torus	Trinkaus, 1983; Vandermeersch, 1981, 1989b
Height of the cranial vault (porion- bregma)	Average = 112.5 mm Min = 111 mm Max = 114 mm	Average = 118.5 mm Min = 116 mm Max = 121 mm	Average = 117.4 mm Min = 98 mm Max = 122,5 mm	Vandermeersch, 1981; Condemi, 1992
The position of the auditory meatus	Far from the modern position in regard to the zygomatic arch	Near the modern position in regard to the zygomatic arch	Low in regard to the zygomatic arch	Suzuki, 1970; Vandermeersch, 1989b
Chin	Absent	Incipient	Present	Suzuki, 1970; Bar-Yose

Skull and postcranial characters as well as body proportions display a East to West cline (Tab. 1, 2 & 3). In others words, the more popolutions are westward, the more their neanderthal characters are prononced.

	West Europe	Near East	Modern human	Authors
Clavicle morphology	Two curvatures in dorsal view	Some clavicle show only one curvature in dorsal view, like modern humans	One curvature in dorsal view (the inferior one)	Voisin, 2000, 2001, 200
Scapula: Axillary sulcus	Dorsal	Bisulcate or ventral	Ventral, sometimes bisulcate	Frayer, 1992; Nara, 1994 Voisin 2000
Radius shaft	High curvature	Slight curvature	Slight curvature	Arensburg and Belfer- Cohen, 1998
Pubic length relative to body size	Very long (outside modern range of variation)	Short (inside modern range of variation)	Short	Rosenberg (1998)
Table 3: Neand	erthal body propo	ortions		
Table 3: Neande	erthal body propo West Europe	near East	Modern human	Authors
Table 3: Neande Stature (for male)	West Europe West Europe Average = 165.4 cm Min = 162 cm Max = 172	Near East Average = 171.2 cm Min = 163.9 cm Max = 176.5 cm	Modern human (Qafzeh and Skhul) Average = 185.2 cm Min = 183.5 cm Max = 187 cm	Authors Vandermeersch, 1981, 1989b
Table 3: Neanda Stature (for male) Thorax width	west Europe West Europe Average = 165.4 cm Min = 162 cm Max = 172 Very large	Near East Near East Average = 171.2 cm Min = 163.9 cm Max = 176.5 cm Smaller (but slightly larger than modern human)	Modern human (Qafzeh and Skhul) Average = 185.2 cm Min = 183.5 cm Max = 187 cm Little bit smaller than the Near East Neanderthal	Authors Vandermeersch, 1981, 1989b Endo and Kimura, 1970; Trinkaus, 1983
Table 3: Neando Stature (for male) Thorax width Limbs	erthal body propa West Europe Average = 165.4 cm Min = 162 cm Max = 172 Very large Shorter	Near East Average = 171.2 cm Min = 163.9 cm Max = 176.5 cm Smaller (but slightly larger than modern human) Longer	Modern human (Qafzeh and Skhul) Average = 185.2 cm Min = 183.5 cm Max = 187 cm Little bit smaller than the Near East Neanderthal Longer	Authors Vandermeersch, 1981, 1989b Endo and Kimura, 1970; Trinkaus, 1983 Trinkaus, 1981

II.) Neanderthal charaters in post-Neanderthal populations

According to numerous authors, some morphological characters in early modern Europeans reflect a Neanderthal influence. These traits exhibit a higher frequency in early modern Europeans than in later Europeans and non-European Pleistocene samples (for exemples see graph. 1 & 2). This pattern, used to infer a Neanderthal contribution to early modern Europeans, is found only in post-Neanderthal populations of Eastern Europe, and no worker has demonstrated such a contribution to Western European populations.

Neanderthal characters in early modern humans display also a West to East cline. These traits exhibit a high frequency in modern human from central Europe and are absent from western Europe populations of modern human. Smith et al. (1989) summary it in writting: "There is little evidence of evolutionary trends in the modern human direction among the west European Neanderthals ... However, in central Europe, there are possible indications of diachronic trends within the neanderthals, in the direction of modern human condition".

Graphic 2: % of axillary scapular border types (from Frayer, 1992)

III.) What about DNA?

Observed differences between Neanderthal and modern human mtDNA should be enough to consider that this two human groups are two distinct species.

Moreover, observed differences between this two human groups are less important than between two chimpanzees subspecies (Barriel & Tillier, 2002).

IV.) Spéciation by distance, an new way for understanding this morpholgical cline?

1°) A particular speciation by distance: the ring species.

In central Siberia, two distinct forms of Greenish warblers (fig. 1), Ph. tr. viridanus and Ph. tr. plumbeitarsus, are sympatric without interbreeding (fig. 2). These two forms are nevertheless connected by a chain of interbreeding populations encircling the Tibetan plateau to the south, and traits change gradually in consecutive populations (Irwin et al., 2001).

: Phyloscopus earblers) (Irwin et al., 2001)

Two populations located at the exetremities of a species repartition area, and connected by a gene flow, could display phenotypic and genetical differences, strong enough to impende hybridations.

on (Irwin et al., 2001)

Conclusion

Speciation by distance allows to explain the Neanderthal morphological variation along an East/West axis as well as the presence of neanderthal traits in some modern human populations and the absence in others. Neanderthal disparition would be the result of an absorption by hybridisation in the Near East and central Europe and, in west Europe, neanderthal would have been replaced by modern human. The evolution would have been reticulate (often in primates (Holliday, in press)) and not dichotomic

2°) Speciation by distance and relation modern humans / Neanderthals To explain the morphological cline in neanderthal population as well as the distribution of

neanderthal traits in first modern human in Europe, three steps are needed (fig. 3): 1°) Settlement in Europe of the first human metapopulation (whatever the species).

2°) Clinal differentiation of this first species where each consecutive population was linked by gene flow. Hence, from Western Europe to Near East, there was a succession of human populations that developed, over time, Neanderthal characters that became more and more marked from East to West. 3°) Spread of modern human into Europe with hybridisation possibility in the Near-East and

central Europe (shown by neanderthal characters in post-neanderthal populations) and without any hybridisation in western Europe (no neanderthal traits in first modern human population).

